

Session Handout

Study Skills Optional Workshop

Introduction to Statistics

Data Processing stages involved in Statistics:

Classification of Primary and Secondary data used in Statistics:

Examples of Sorting of data used in Statistics:

- Coding e.g. Male = 0, Female = 1, Neither = 2
- Grouping e.g. Age groups 25 34, 35 44, 45 54, 55 64, etc.
 (COUNT, COUNTIF & COUNTIFS Functions can be used to obtain frequency of grouped data in MS Excel)

Analysis of data used in Statistics:

- Descriptive Analysis: to describe the properties of data
- Inferential Analysis: to draw conclusions or take decisions about data

Introduction to Statistics December 2021

Measures	Ungrouped data	Grouped data	Excel Functions
Mean	$\frac{1}{N}\sum_{i=1}^{N}x_{i}$	$\frac{1}{\sum f} \sum_{i=1}^{N} f_i x_i$	AVERAGE (Ungrouped) SUMPRODUCT & SUM (Grouped)
Median	N is ODD number: $\frac{N+1}{2} \text{th data}$ N is EVEN number: mean of $\frac{N}{2} \text{th } \& \frac{N+2}{2} \text{th data}$	$l_m + \frac{\frac{\sum f}{2} - \sum f_{b,m}}{f_m} w_m$	MEDIAN
Mode	Data that occurs MOST		MODE.SNGL (First Mode only) MODE.MULT (All Modes)
Range	Highest data – Lowest data		MAX – MIN
Standard deviation	$\sqrt{\frac{\sum_{i=1}^{N}(x_i-\overline{x})^2}{N-1}}$	$\sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \overline{x})^2}{\sum f - 1}}$	STDEV.S (Sample)
	(Sample)	(Sample)	STDEV.P
	$\sqrt{\frac{\sum_{i=1}^{N}(x_i-\overline{x})^2}{N}}$	$\sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \overline{x})^2}{\sum f}}$	(Population)
	(Population)	(Population)	

 x_i : Individual data value; N: Number of data; f_i : frequency of each class; Σ : Summation symbol;

n: Number of classes; l_m : Lower class boundary of median class; $\sum f_{b,m}$: Cumulative frequency of class just before the median class; f_m : frequency of the median class;

 w_m : width of the median class; Median Class: The first class whose cumulative frequency $\geq \frac{\sum f}{2}$

Exercises (Use the data in **Data for Exercises** tab of this Excel file https://bit.ly/3pPqmYy OR https://ardenuni-

 $\underline{my.sharepoint.com/:x:/g/personal/mdada_arden_ac_uk/EZdQZKQnEWVOmGBwldpHmx4B-GzWOHEgfL2CtdOkyMT1Xg?e=CcfzST)}$

- (1) Complete the descriptive statistics of Weight, Height & BMI for the Ungrouped data (Hint: Body Mass Index, $BMI = \frac{Weight (in \, kg)}{Height^2}$ Height should be in metres (m).
- (2) Complete the descriptive statistics of Age for the Grouped data
- (3) Plot a Scatter Plot chart of BMI against Age

